
Java Coding 6
Collections

Not-so-easy Collections

• Arrays
• Common data structure
• All elements of same type
• Are Objects in Java
• Basis of ArrayList class!

3 6 5 110

1 2 3 40

grades

Each element has unique
successor & predecessor

(except first & last.)

Each element identified by an
index (label/subscript)

Name for entire
structure

Array Syntax (1)

• Arrays are Objects, so
• declare variable then instantiate

3 6 5 110

1 2 3 40

grades

type[] variableName ;

variableName = new type[noOfElements];

int[] grades;
grades = new int[5];

Note use of square brackets!

Array size cannot
be changed after

creation!

Array Syntax (1)

Initializer list

int[] grades = {10, 3, 6, 5, 1};

Can only use this when declaring array, not
afterwards!

Useful for constants such as

String[] daysOfWeek = { “Mon”, “Tue”, “Wed”,
“Thu”, “Fri”, “Sat”, “Sun”};

Array Syntax (2)

• Referring to an individual element

variableName[index]

 examples

grades[0] grades[i]

grades[1] grades[i+1]

names[99] names[FIRST]

grades[0] = 10;

grades[1] = grades[0] + 2;

System.out.println(grades[0]);

names[99] = scan.nextLine();

Where index is a
literal, named constant,
variable, or expression.

Note: index must be between 0 & noOfElements

in array – 1,

else ArrayIndexOutOfBoundsException!

Copyright © 2014 by John Wiley & Sons. All rights reserved. 6

Syntax 6.1 Arrays

Copyright © 2014 by John Wiley & Sons. All rights reserved. 7

Arrays – Bounds Error

 A bounds error occurs if you supply an invalid array

index.

 Causes your program to terminate with a run-time error.

 Example:

double[] values = new double[10];

values[10] = value; // Error

 values.length yields the length of the values array.

 There are no parentheses following length.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 8

Declaring Arrays

Copyright © 2014 by John Wiley & Sons. All rights reserved. 9

Array References

 An array reference specifies the location of an array.

 Copying the reference yields a second reference to the

same array.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 10

Using Arrays with Methods

 Arrays can occur as method arguments and return values.

 An array as a method argument

public void addScores(int[] values)

{

for (int i = 0; i < values.length; i++)

{

totalScore = totalScore + values[i];

}

}

 To call this method

int[] scores = { 10, 9, 7, 10 };

fred.addScores(scores);

 A method with an array return value

public int[] getScores()

Processing all elements

• e.g. Printing contents of array grades

for (int i = 0; i < grades.length; i++)

System.out.println(grades[i]);

for each int k in grades array

print k

for (int i = 0; i < ___________; i++)

System.out.println(grades[i]);

System.out.println(grades[0]);

System.out.println(grades[1]);

:

// alternate for syntax
for (int k : grades)

System.out.println(k);

Cannot print array directly

System.out.println(grades): // doesn’t work!

length is property (not method!) of arrays – returns

number of elements the array has.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 12

The Enhanced for Loop

 You can use the enhanced for loop to visit all elements of

an array.

 Totaling the elements in an array with the enhanced for

loop

double[] values = . . .;

double total = 0;

for (double element : values)

{

total = total + element;

}

 The loop body is executed for each element in the array

values.

 Read the loop as “for each element in values”.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 13

The Enhanced for Loop

 Traditional alternative:

for (int i = 0; i < values.length; i++)

{

double element = values[i];

total = total + element;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 14

The Enhanced for Loop

 Not suitable for all array algorithms.

 Does not allow you to modify the contents of an array.

 The following loop does not fill an array with zeros:

for (double element : values)

{

element = 0;

// ERROR: this assignment does not modify

// array elements

}

 Use a basic for loop instead:

for (int i = 0; i < values.length; i++)

{

values[i] = 0; // OK

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 15

Syntax 6.2 The Enhanced for Loop

Copyright © 2014 by John Wiley & Sons. All rights reserved. 16

ArrayPlay - code

Easy Problem using arrays!

• Printing table of differences from average

1. read set of values

2. compute average of set of values

3. print table of differences using average & set of values

 Steps 2 & 3 are straightforward

 For step 1 need to know how many values

 Fixed, e.g. 5

Ask user

Use sentinel - but length of array is fixed!

Easy Problem using arrays - code

Data Requirements:
average – double
setOfValues – int[]

Easy Problem with Methods!

• Identify method signatures from algorithm

1. read set of values

2. compute average of set of values

3. print table of differences using average & set of values

int[] readSetOfValues()

double computeAverage(int[] setOfValues)

void printTable(double average, int[] setOfValues)

Note: Object-type parameters
can act as outputs too!

Copyright © 2014 by John Wiley & Sons. All rights reserved. 20

Common Array Algorithm: Filling

 Fill an array with squares (0, 1, 4, 9, 16, ...):

for (int i = 0; i < values.length; i++)

{

values[i] = i * i;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 21

Common Array Algorithm: Maximum or

Minimum

 Finding the maximum in an array

double largest = values[0];

for (int i = 1; i < values.length; i++)

{

if (values[i] > largest)

{

largest = values[i];

}

}

 The loop starts at 1 because we initialize largest with

values[0].

Copyright © 2014 by John Wiley & Sons. All rights reserved. 22

Common Array Algorithm: Linear Search

 To find the position of an element:

• Visit all elements until you have found a match or you have come

to the end of the array

 Example: Find the first element that is equal to 100

int searchedValue = 100;

int pos = 0;

boolean found = false;

while (pos < values.length && !found)

{

if (values[pos] == searchedValue) { found = true; }

else { pos++; }

}

if (found) { System.out.println("Found at position: " + pos); }

else { System.out.println("Not found"); }

Copyright © 2014 by John Wiley & Sons. All rights reserved. 23

Common Array Algorithm: Removing an

Element

Problem: To remove the element with index pos from the

array values with number of elements currentSize.

 Unordered

1. Overwrite the element to be removed with the last element of

the array.

2. Decrement the currentSize variable.

values[pos] = values[currentSize - 1];

currentSize--;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 24

Common Array Algorithm: Removing an

Element

Figure 6 Removing an Element in an Unordered Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 25

Common Array Algorithm: Removing an

Element

 Ordered array

1. Move all elements following the element to be removed to a lower

index.

2. Decrement the variable holding the size of the array.

for (int i = pos + 1; i < currentSize; i++)

{

values[i - 1] = values[i];

}

currentSize--;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 26

Common Array Algorithm: Removing an

Element

Figure 7 Removing an Element in an Ordered Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 27

Common Array Algorithm: Inserting an

Element

 If order does not matter

1. Insert the new element at the end of the array.

2. Increment the variable tracking the size of the array.

if (currentSize < values.length)

{

currentSize++;

values[currentSize -1] = newElement;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 28

Common Array Algorithm: Inserting an

Element

Figure 8 Inserting an Element in an Unordered Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 29

Common Array Algorithm: Inserting an

Element

 If order matters Increment the variable tracking the size of the array.

1. Move all elements after the insertion location to a higher index.

2. Insert the element.

if (currentSize < values.length)

{

currentSize++;

for (int i = currentSize - 1; i > pos; i--)

{

values[i] = values[i - 1];

}

values[pos] = newElement;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 30

Common Array Algorithm: Inserting an

Element

Figure 9 Inserting an Element in an Ordered Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 31

Common Array Algorithm: Swapping

Elements

 To swap two elements, you need a temporary variable.

 We need to save the first value in the temporary variable

before replacing it.

double temp = values[i];

values[i] = values[j];

 Now we can set values[j] to the saved value.

values[j] = temp;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

Common Array Algorithm: Swapping

Elements

Figure 10 Swapping Array Elements

Copyright © 2014 by John Wiley & Sons. All rights reserved. 33

Common Array Algorithm: Copying an

Array

 Copying an array variable yields a second reference to the

same array:

double[] values = new double[6];

. . . // Fill array

double[] prices = values;

 To make a true copy of an array, call the Arrays.copyOf

method:

double[] prices =

Arrays.copyOf(values, values.length);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 34

Common Array Algorithm: Copying an

Array

Figure 11 Copying an Array Reference versus Copying an

Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

Common Array Algorithm: Growing an

Array

 To grow an array that has run out of space, use the

Arrays.copyOf method to double the length of an array

double[] newValues = Arrays.copyOf(values, 2 * values.length);

values = newValues;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

Common Array Algorithm: Growing an

Array

Figure 12 Growing an Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

Reading Input

 To read a sequence of arbitrary length:

• Add the inputs to an array until the end of the input has been

reached.

• Grow when needed.

double[] inputs = new double[INITIAL_SIZE];

int currentSize = 0;

while (in.hasNextDouble())

{

// Grow the array if it has been completely filled

if (currentSize >= inputs.length)

{

inputs = Arrays.copyOf(inputs, 2 * inputs.length); // Grow the inputs array

}

inputs[currentSize] = in.nextDouble(); currentSize++;

}

• Discard unfilled elements.

inputs = Arrays.copyOf(inputs, currentSize);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

section_3/LargestInArray.java

This program reads a sequence of values and prints them, marking the

largest value.

Program Run

Please enter values, Q to quit: 34.5 80 115 44.5 Q

34.5

80

115 <== largest value

44.5

code/section_3/LargestInArray.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 39

section_3/LargestInArray.java

1 import java.util.Scanner;

2

3 /**

4 This program reads a sequence of values and prints them, marking the largest value.

5 */

6 public class LargestInArray

7 {

8 public static void main(String[] args)

9 {

10 final int LENGTH = 100;

11 double[] values = new double[LENGTH];

12 int currentSize = 0;

13

14 // Read inputs

15

16 System.out.println("Please enter values, Q to quit:");

17 Scanner in = new Scanner(System.in);

18 while (in.hasNextDouble() && currentSize < values.length)

19 {

20 values[currentSize] = in.nextDouble();

21 currentSize++;

22 }

23

Continu
ed

code/section_3/LargestInArray.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 40

section_3/LargestInArray.java

24 // Find the largest value

25

26 double largest = values[0];

27 for (int i = 1; i < currentSize; i++)

28 {

29 if (values[i] > largest)

30 {

31 largest = values[i];

32 }

33 }

34

35 // Print all values, marking the largest

36

37 for (int i = 0; i < currentSize; i++)

38 {

39 System.out.print(values[i]);

40 if (values[i] == largest)

41 {

42 System.out.print(" <== largest value");

43 }

44 System.out.println();

45 }

46 }

47 }

Continu
ed

code/section_3/LargestInArray.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 41

section_3/LargestInArray.java

Program Run

Please enter values, Q to quit: 34.5 80 115 44.5 Q

34.5

80

115 <== largest value

44.5

code/section_3/LargestInArray.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 42

Self Check 6.13

Answer:

20 <== largest value

10

20 <== largest value

Given these inputs, what is the output of the

LargestInArray program?

20 10 20 Q

Copyright © 2014 by John Wiley & Sons. All rights reserved. 43

Self Check 6.14

Answer:

int count = 0;

for (double x : values)

{

if (x == 0) { count++; }

}

Write a loop that counts how many elements in an array are

equal to zero.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 44

Self Check 6.15

Answer: If all elements of values are negative, then

the result is incorrectly computed as 0.

Consider the algorithm to find the largest element in an

array. Why don’t we initialize largest and i with zero,

like this?

double largest = 0;

for (int i = 0; i < values.length; i++)

{

if (values[i] > largest) { largest = values[i]; }

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 45

Copyright © 2014 by John Wiley & Sons. All rights reserved. 46

Using part of an array (1)

 Array size specified & fixed at instantiation

 Problem

• if required size is unknown?

 Solution

• make big enough for worst-case & use part of it

Must divide array into two sets, in-use & not in-use … but how?

3 6 5 110

1 2 3 40

grades

3 -5 7

5 6 7

in-use not in-use

One simple
& common
solution

Copyright © 2014 by John Wiley & Sons. All rights reserved. 47

Using part of an array (2)

 Store elements sequentially from element zero

 Keep count of number of in-use elements (valid)

3 6 5 110

1 2 3 40

grades

? ? ?

5 6 7

in-use not in-use

5valid

8maxEls

Now process only valid
elements not maxEls

or grades.length

Copyright © 2014 by John Wiley & Sons. All rights reserved. 48

Partially Filled Arrays

 Array length = maximum number of elements in array.

 Usually, array is partially filled

 Define an array larger than you will need

final int LENGTH = 100;

double[] values = new double[LENGTH];

 Use companion variable to keep track of current size: call

it currentSize

Copyright © 2014 by John Wiley & Sons. All rights reserved. 49

Partially Filled Arrays

 A loop to fill the array

int currentSize = 0;

Scanner in = new Scanner(System.in);

while (in.hasNextDouble())

{

if (currentSize < values.length)

{

values[currentSize] = in.nextDouble();

currentSize++;

}

}

 At the end of the loop, currentSize contains the actual

number of elements in the array.

 Note: Stop accepting inputs when currentSize reaches

the array length.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 50

Partially Filled Arrays

Copyright © 2014 by John Wiley & Sons. All rights reserved. 51

Partially Filled Arrays

 To process the gathered array elements, use the

companion variable, not the array length:

for (int i = 0; i < currentSize; i++)

{

System.out.println(values[i]);

}

 With a partially filled array, you need to remember how

many elements are filled.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 52

Two-Dimensional Arrays

 An arrangement consisting of rows and columns of values

• Also called a matrix.

 Example: medal counts of the figure skating competitions at

the 2010 Winter Olympics.

Figure 13 Figure Skating Medal counts

Copyright © 2014 by John Wiley & Sons. All rights reserved. 53

Two-Dimensional Arrays

 Use a two-dimensional array to store tabular data.

 When constructing a two-dimensional array, specify how

many rows and columns are needed:

final int COUNTRIES = 7;

final int MEDALS = 3;

int[][] counts = new int[COUNTRIES][MEDALS];

Copyright © 2014 by John Wiley & Sons. All rights reserved. 54

Two-Dimensional Arrays

 You can declare and initialize the array by grouping each

row:

int[][] counts =

{

{ 1, 0, 1 },

{ 1, 1, 0 },

{ 0, 0, 1 },

{ 1, 0, 0 },

{ 0, 1, 1 },

{ 0, 1, 1 },

{ 1, 1, 0 }

};

 You cannot change the size of a two-dimensional array

once it has been declared.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 55

Syntax 6.3 Two-Dimensional Array Declaration

Copyright © 2014 by John Wiley & Sons. All rights reserved. 56

Accessing Elements

 Access by using two index values, array[i][j]

int medalCount = counts[3][1];

 Use nested loops to access all elements in a two-

dimensional array.

 Example: print all the elements of the counts array

for (int i = 0; i < COUNTRIES; i++)

{

// Process the ith row

for (int j = 0; j < MEDALS; j++)

{

// Process the jth column in the ith row

System.out.printf("%8d", counts[i][j]);

}

System.out.println(); // Start a new line at the end of the row

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 57

Accessing Elements

Figure 14 Accessing an Element in a Two-Dimensional Array

Copyright © 2014 by John Wiley & Sons. All rights reserved. 58

Accessing Elements

 Number of rows: counts.length

 Number of columns: counts[0].length

 Example: print all the elements of the counts array

for (int i = 0; i < counts.length; i++)

{

for (int j = 0; j < counts[0].length; j++)

{

System.out.printf("%8d", counts[i][j]);

}

System.out.println();

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 59

Locating Neighboring Elements

Figure 15 Neighboring Locations in a Two-Dimensional

Array

 Watch out for elements at the boundary array

• counts[0][1] does not have a neighbor to the top

Copyright © 2014 by John Wiley & Sons. All rights reserved. 60

Accessing Rows and Columns

 Problem: To find the number of medals won by a country

• Find the sum of the elements in a row

 To find the sum of the i
th

row

• compute the sum of counts[i][j], where j ranges from 0 to

MEDALS - 1.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 61

Accessing Rows and Columns

 Loop to compute the sum of the i
th

row

int total = 0;

for (int j = 0; j < MEDALS; j++)

{

total = total + counts[i][j];

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 62

Accessing Rows and Columns

 To find the sum of the j
th

column

• Form the sum of counts[i][j], where i ranges from 0 to COUNTRIES – 1

int total = 0;

for (int i = 0; i < COUNTRIES; i++

{

total = total + counts[i][j];

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 63

section_6/Medals.java

1 /**

2 This program prints a table of medal winner counts with row totals.

3 */

4 public class Medals

5 {

6 public static void main(String[] args)

7 {

8 final int COUNTRIES = 7;

9 final int MEDALS = 3;

10

11 String[] countries =

12 {

13 "Canada",

14 "China",

15 "Germany",

16 "Korea",

17 "Japan",

18 "Russia",

19 "United States"

20 };

21

22 int[][] counts =

23 {

24 { 1, 0, 1 },

25 { 1, 1, 0 },

26 { 0, 0, 1 },

27 { 1, 0, 0 },

28 { 0, 1, 1 },

29 { 0, 1, 1 },

30 { 1, 1, 0 }

31 };

32

Continued

code/section_6/Medals.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 64

section_6/Medals.java

33 System.out.println(" Country Gold Silver Bronze Total");

34

35 // Print countries, counts, and row totals

36 for (int i = 0; i < COUNTRIES; i++)

37 {

38 // Process the ith row

39 System.out.printf("%15s", countries[i]);

40

41 int total = 0;

42

43 // Print each row element and update the row total

44 for (int j = 0; j < MEDALS; j++)

45 {

46 System.out.printf("%8d", counts[i][j]);

47 total = total + counts[i][j];

48 }

49

50 // Display the row total and print a new line

51 System.out.printf("%8d\n", total);

52 }

53 }

54 }

Continued

code/section_6/Medals.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 65

section_6/Medals.java

Program Run

code/section_6/Medals.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 66

Self Check 6.31

Consider an 8 × 8 array for a board game:

int[][] board = new int[8][8];

Using two nested loops, initialize the board so that zeros and ones

alternate, as on a checkerboard:

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

. . .

1 0 1 0 1 0 1 0

Hint: Check whether i + j is even.

Continued

Copyright © 2014 by John Wiley & Sons. All rights reserved. 67

Self Check 6.31

Answer:

for (int i = 0; i < 8; i++)

{

for (int j = 0; j < 8; j++)

{

board[i][j] = (i + j) % 2;

}

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 68

Copyright © 2014 by John Wiley & Sons. All rights reserved. 69

Problem Solving: Discovering Algorithms

by Manipulating Physical Objects

 Manipulating physical objects can give you ideas for

discovering algorithms.

 The Problem: You are given an array whose size is an

even number, and you are to switch the first and the

second half.

 Example

• This array

• will become

Copyright © 2014 by John Wiley & Sons. All rights reserved. 70

Problem Solving: Discovering Algorithms

by Manipulating Physical Objects

 The pseudocode

i = 0 j = size / 2

While (i < size / 2)

Swap elements at positions i and j

i++

j++

Copyright © 2014 by John Wiley & Sons. All rights reserved. 71

Duplicate Elimination

• Initialize the integer array numbers to hold five numbers between 10 and 100.

• Remember to validate the input and display an error message if the user

inputs invalid data.

• If the number entered is not unique, display a message to the user;

otherwise, store the number in the array and display the list of unique

numbers entered so far.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 72

Rotation

• Write a method that is passed an array, x, of doubles and an integer
rotation amount, n.

• The method creates a new array with the items of x moved forward by
n positions.

• Elements that are rotated off the array will appear at the end.
• For example, suppose x contains the following items in sequence:

1 2 3 4 5 6 7
• After rotating by 3, the elements in the new array will appear in this

sequence:
5 6 7 1 2 3 4

• Array x should be left unchanged by this method.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 73

Peevish Postman Problem

• A postman works in a small post office with consecutive letter
boxes numbered 1 to 100.

• Each box was equipped with a door that could be opened and
closed.

• Late one evening the postman made a “pass” through the boxes
and opened every door.

• Still bored, he walked back to the beginning and made a second
pass, this time visiting boxes 2, 4, 6, …, 100.

• Since those doors were now open, he closed them.
• On the third pass he visited boxes 3, 6, 9, 12, …, 99 and if a door

was open he closed it, and if the door was closed he opened it.
• He continued to make passes through the boxes and always

followed the same rule:
• On each pass i from 1 to 100, he visited only boxes that were

multiples of i, … and changed the state of each door he visited.
• After making 100 passes at the doors, he surveyed the results and

was surprised by the pattern of doors that he saw.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 74

Peevish Postman Problem - Hint

• Use a Boolean array to represent the doors.
• A true value in the array represents an open door, and

a false value represents a closed one.
• You will have to write two nested loops in order to

manipulate the array as described above.
• The inner loop will control the door number visited on a

single pass, and the outer loop will control the number
of passes.

• Print the state of each door after the 100th pass.

